
ISSN 2824-7795

Visualizing Data using t-SNE
A practical computo example

Laurens van der Maaten TiCC, Tilburg University
Geoffrey Hinton Department of Computer Science, University of Toronto

Date published: 2008-08-11 Last modified: 2024-12-01

Abstract

We present a new technique called “t-SNE” that visualizes high-dimensional data by giving
each datapoint a location in a two or three-dimensional map. The technique is a variation of
Stochastic Neighbor Embedding hinton:stochastic that is much easier to optimize, and produces
significantly better visualizations by reducing the tendency to crowd points together in the
center of the map. t-SNE is better than existing techniques at creating a single map that reveals
structure at many different scales. This is particularly important for high-dimensional data that
lie on several different, but related, low-dimensional manifolds, such as images of objects from
multiple classes seen from multiple viewpoints. For visualizing the structure of very large data
sets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit
structure of all the data to influence the way in which a subset of the data is displayed. We
illustrate the performance of t-SNE on a wide variety of data sets and compare it with many
other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally
Linear Embedding. The visualization produced by t-SNE are significantly better than those
produced by other techniques on almost all of the data sets.

Keywords: visualization, dimensionality reduction, manifold learning, embedding algorithms, multi-
dimensional scaling

Contents

1 Introduction 2

2 Stochastic Neighbor Embedding 3

3 t-Distributed Stochastic Neighbor Embedding 5
3.1 Symmetric SNE . 6
3.2 The Crowding Problem . 6
3.3 Mismatched tails can compensate for mismatched dimensionalities 7
3.4 Optimization methods for t-SNE . 9

4 Experiments 10
4.1 Data Sets . 10
4.2 Experimental Setup . 11
4.3 Results . 11

5 Applying t-SNE to Large Data Sets 14

1

https://orcid.org/0000-0002-1931-6828
https://orcid.org/0000-0002-8063-7209

6 Discussion 17
6.1 Comparison with Related Techniques . 17
6.2 Weakness . 19

7 Conclusions 20

Acknowledgments 20

References 21

Appendix A: Derivation of the t-SNE gradient 23

Appendix B: Analytical Solution to RandomWalk Probabilities 24

1 Introduction

Visualization of high-dimensional data is an important problem in many different domains, and
deals with data of widely varying dimensionality. Cell nuclei that are relevant to breast cancer,
for example, are described by approximately 30 variables Street, Wolberg, and Mangasarian (1993),
whereas the pixel intensity vectors used to represent images or the word-count vectors used to
represent documents typically have thousands of dimensions. Over the last few decades, a variety
of techniques for the visualization of such high-dimensional data have been proposed, many of
which are reviewed by Ferreira de Oliveira and Levkowitz (2003). Important techniques include
iconographic displays such as Chernoff faces Chernoff (1973), pixel-based techniques Keim (2000),
and techniques that represent the dimensions in the data as vertices in a graph Di Battista et al.
(1994). Most of these techniques simply provide tools to display more than two data dimensions, and
leave the interpretation of the data to the human observer. This severely limits the applicability of
these techniques to real-world data sets that contain thousands of high-dimensional datapoints.

In contrast to the visualization techniques discussed above, dimensionality reduction methods
convert the high-dimensional data set 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑛 into two or three-dimensional data 𝒴 =
𝑦1, 𝑦2, … , 𝑦𝑛 that can be displayed in a scatterplot. In the paper, we refer to the low-dimensional data
representation𝒴 as a map, and to the low-dimensional representations 𝑦𝑖 of individual datapoints
as map points. The aim of dimensionality reduction is to preserve as much of the significant
structure of the high-dimensional data as possible in the low-dimensional map. Various techniques
for this problem have been proposed that differ in the type of structure they preserve. Traditional
dimensionality reduction techniques such as Principal Components Analysis Hotelling (1933) and
classical multidimensional scaling Torgerson (1952) are linear techniques that focus on keeping the
low-dimensional representations of dissimilar datapoints far apart. For high-dimensional data that
lies on or near a low-dimensional, non-linear manifold it is usually more important to keep the
low-dimensional representations of very similar datapoints close together, which is typically not
possible with a linear mapping.

A large number of nonlinear dimensionality reduction techniques that aim to preserve the local
structure of data have been proposed, many of which are reviewed by JohnA. Lee and Verleysen (2007).
In particular, we mention the following seven techniques: (1) Sammon mapping Sammon (1969), (2)
curvilinear components analysis Demartines and Herault (1997), (3) Stochastic Neighbor Embedding
Hinton and Roweis (2003); (4) Isomap Tenenbaum, Silva, and Langford (2000), (5) Maximum Variance
Unfolding Kilian Q. Weinberger, Sha, and Saul (2004); (6) Locally Linear Embedding Roweis and
Saul (2000), and (7) Laplacian Eigenmaps Belkin and Niyogi (2001). Despite the strong performance
of these techniques on artificial data sets, they are often not very successful at visualizing real,
high-dimensional data. In particular, most of the techniques are not capable of retaining both the

2

local and the global structure of the data in a single map. For instance, a recent study reveals that
even a semi-supervised variant of MVU is not capable of separating handwritten digits into their
natural clusters Song et al. (2008).

In this paper, we describe a way of converting a high-dimensional data set into a matrix of pairwise
similarities and we introduce a new technique, called “t-SNE”, for visualizing the resulting similarity
data. t-SNE is capable of capturing much of the local structure of the high-dimensional data very
well, while also revealing global structure such as the presence of clusters at several scales. We
illustrate the performance of t-SNE by comparing it to the seven dimensionality reduction techniques
mentioned above on five data sets from a variety of domains. Because of space limitations, most of
the (7 + 1) × 5 = 40 maps are presented in the supplemental material, but the maps that we present
in the paper are sufficient to demonstrate the superiority of t-SNE.

The outline of the paper is as follows. In Section 2, we outline SNE as presented by Hinton and Roweis
(2003), which forms the basis for t-SNE. In Section 3, we present t-SNE, which has two important
differences from SNE. In Section Section 4, we describe the experimental setup and the results of our
experiments. Subsequently, Section 5 shows how t-SNE can be modified to visualize real-world data
sets that contain many more than 10,000 datapoints. The results of our experiments are discussed in
more detail in Section 6. Our conclusions and suggestions for future work are presented in Section 7.

2 Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) starts by converting the high-dimensional Euclidean distances
between datapoints into conditional probabilities that represent similarities.1 The similarity of
datapoint 𝑥𝑗 to datapoint 𝑥𝑖 is the conditional probabilities, 𝑝𝑗|𝑖, that 𝑥𝑖 would pick 𝑥𝑗 as its neighbor if
neighbors were picked in proportion to their probability density under a Gaussian centered at 𝑥𝑖.
For nearby datapoints, 𝑝𝑗|𝑖 is relatively high, whereas for widely separated datapoints, 𝑝𝑗|𝑖 will be
almost infinitesimal (for reasonable values of the variance of the Gaussian, 𝜎𝑖). Mathematically, the
conditional probability 𝑝𝑗|𝑖 is given by

𝑝𝑗|𝑖 =
exp(−‖𝑥𝑖 − 𝑥𝑗‖2/(2𝜎2𝑖))

∑𝑘≠𝑖 exp(−‖𝑥𝑖 − 𝑥𝑘‖2/2𝜎2𝑖)
. (1)

where 𝜎𝑖 is the variance of the Gaussian that is centered on datapoint 𝑥𝑖. The method for determining
the value of 𝜎𝑖 is presented later in this section. Because we are only interested in modeling pairwise
similarities, we set the value of 𝑝𝑖|𝑖 to zero. For the low-dimensional counterparts 𝑦𝑖 and 𝑦𝑗 of the
high-dimensional datapoints 𝑥𝑖 and 𝑥𝑗, it is possible to compute a similar conditional probability,
which we denote by 𝑞𝑗|𝑖. We set 2 the variance of the Gaussian that is employed in the computation
of the conditional probabilities 𝑞𝑗|𝑖 to

1
√2
. Hence, we model the similarity of a map point 𝑦𝑗 to map

point 𝑦𝑖 by

𝑞𝑗|𝑖 =
exp(−‖𝑦𝑖 − 𝑦𝑗‖2)

∑𝑘≠𝑖 exp(−‖𝑦𝑖 − 𝑦𝑘‖2)
.

1SNE can also be applied to data sets that consist of pairwise similarities between objects rather than high-dimensional
vector representations of each object, provided these similarities can be interpreted as conditional probabilities. For
example, human word associations data consists of the probability of producing each possible word in response to a given
word, as a result of which it is already in the form required by SNE.

2Setting the variance in the low-dimensional Gaussians to another value only results in a rescaled version of the final
map. Note that by using the same variance for every datapoint in the low-dimensional map, we lose the property that the
data is a perfect model of itself if we embed it in a space of the same dimensionality, because in the high-dimensional
space, we used a different variance 𝜎𝑖 in each Gaussian.

3

Again, since we are only interested in modeling pairwise similarities, we set 𝑞𝑖|𝑖 = 0.

If the map points 𝑦𝑖 and 𝑦𝑗 correctly model the similarity between the high-dimensional data-points
𝑥𝑖 and 𝑥𝑗, the conditional probabilities 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖 will be equal. Motivated by this observation, SNE
aims to find a low-dimensional data representation that minimizes the mismatch between 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖.
A natural measure of the faithfulness with which 𝑞𝑗|𝑖 models 𝑝𝑗|𝑖 is the Kullback-Leibler divergence
(which is in the case equal to the cross-entropy up to an additive constant). SNE minimizes the
sum of Kullback-Leibler divergences over all datapoints using a gradient descent method. The cost
function 𝐶 is given by

𝐶 = ∑
𝑖
𝐾𝐿(𝑃𝑖‖𝑄𝑖) = ∑

𝑖
∑
𝑗
𝑝𝑗|𝑖 log

𝑝𝑗|𝑖
𝑞𝑗|𝑖

, (2)

inwhich 𝑃𝑖 represents the conditional probability distribution over all other datapoints given datapoint
𝑥𝑖, and 𝑄𝑖 represents the conditional probability distribution over all other map points given map
point 𝑦𝑖. Because the Kullback-Liebler divergence is not symmetric, different types of error in the
pairwise distances in the low-dimensional map are not weighted equally. In particular, there is a
large cost for using widely separated map points to represent nearby datapoints (i.e, for using a
small 𝑞𝑗|𝑖 to model a large 𝑝𝑗|𝑖), but there is only a small cost for using nearby map points to represent
widely separated datapoints. This small cost comes from wasting some of the probability mass in the
relevant 𝑄 distributions. In other words, the SNE cost function focuses on retaining the local structure
of the data in the map (for reasonable values of the variance of the Gaussian in the high-dimensional
space, 𝜎𝑖).

The remaining parameter to be selected the variance 𝜎𝑖 of the Gaussian that is centered over each
high-dimensional datapoint, 𝑥𝑖. It is not likely that there is a single value of 𝜎𝑖 that is optimal for all
datapoints in the data set because the density of the data is likely to vary. In dense regions, a smaller
value of 𝜎𝑖 is usually more appropriate than in sparser regions. Any particular value of 𝜎𝑖 induces a
probability distribution, 𝑃𝑖, over all of the other datapoints. This distribution has an entropy which
increases as 𝜎𝑖 increases. SNE performs a binary search for the value of 𝜎𝑖 that produces a 𝑃𝑖 with a
fixed perplexity that is specified by the user3. The perplexity is defined as

𝑃𝑒𝑟𝑝(𝑃𝑖) = 2𝐻(𝑃𝑖) ,

where 𝐻(𝑃𝑖) is the Shannon entropy of 𝑃𝑖 measured in bits

𝐻(𝑃𝑖) = −∑
𝑗
𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖 .

The perplexity can be interpreted as a smooth measure of the effective number of neighbors. The
performance of SNE is fairly robust to changes in the perplexity, and typical values are between 5
and 50.

The minimization of the cost function in Equation 2 is performed using a gradient descent method.
The gradient has a surprisingly simple form

𝜕𝐶
𝜕𝑦𝑖

= 2∑
𝑗
(𝑝𝑗|𝑖 − 𝑞𝑗|𝑖 + 𝑝𝑖|𝑗 − 𝑞𝑖|𝑗)(𝑦𝑖 − 𝑦𝑗) .

3Note that the perplexity increases monotonically with the variance 𝜎𝑖.

4

Physically, the gradient may be interpreted as the resultant force created by a set of springs between
the map point 𝑦𝑖 and all other map points 𝑦𝑗. All springs exert a force along the direction (𝑦𝑖 − 𝑦𝑗).
The spring between 𝑦𝑖 and 𝑦𝑗 repels or attracts the map points depending on whether the distance
between the two in the map is too small or too large to represent the similarities between the two
high-dimensional datapoints. The force exerted by the spring between 𝑦𝑖 and 𝑦𝑗 is proportional to its
length, and also proportional to its stiffness, which is the mismatch (𝑝𝑗|𝑖 − 𝑞𝑗|𝑖 + 𝑝𝑖|𝑗 + 𝑞𝑖|𝑗) between
the pairwise similarities of the data points.

The gradient descent is initialized by sampling map points randomly from an isotropic Gaussian
with small variance that is centered around the origin. In order to speed up the optimization and to
avoid poor local minima, a relatively large momentum term is added to the gradient. In other words,
the current gradient is added to an exponentially decaying sum of previous gradients in order to
determine the changes in the coordinates of the map points at each iteration of the gradient search.
Mathematically, the gradient update with a momentum term is given by

𝒴 (𝑡) = 𝒴 (𝑡−1) + 𝜂 𝜕𝐶
𝜕𝒴

+ 𝛼(𝑡) (𝒴 (𝑡−1) −𝒴 (𝑡−2)) ,

where 𝒴 (𝑡) indicates the solution at iteration 𝑡, 𝜂 indicates the learning rate, and 𝛼(𝑡) represents the
momentum at iteration 𝑡.

In addition, in the early stages of the optimization, Gaussian noise is added to the map points after
each iteration. Gradually reducing the variance of this noise performs a type of simulated annealing
that helps the optimization to escape from poor local minima in the cost function. If the variance of
the noise changes very slowly at the critical point at which the global structure of the map starts to
form, SNE tends to find maps with a better global organization. Unfortunately, this requires sensible
choices of the initial amount of Gaussian noise and the rate at which it decays. Moreover, these
choices interact with the amount of momentum and the step size that are employed in the gradient
descent. It is therefore common to run the optimization several times on a data set to find appropriate
values for the parameters.4 In this respect, SNE is inferior to methods that allow convex optimization
and it would be useful to find an optimization method that gives good results without requiring the
extra computation time and parameter choices introduced by the simulated annealing.

3 t-Distributed Stochastic Neighbor Embedding

Section 2 discussed SNE as it was presented by Hinton and Roweis (2003). Although SNE constructs
reasonably good visualizations, it is hampered by a cost function that is difficult to optimize and by a
problem we refer to as the “crowding problem.” In this section, we present a new technique called
“t-Distributed Stochastic Neighbor Embedding” or “t-SNE” that aims to alleviate these problems. The
cost function used by t-SNE differs from the one used by SNE in two ways: (1) it uses a symmetrized
version of the SNE cost function with simpler gradients that was briefly introduced by Cook et
al. (2007) and (2) it uses a Student-t distribution rather than a Gaussian to compute the similarity
between two points in the low dimensional space. t-SNE employs a heavy-tailed distribution in the
low-dimensional space to alleviate both the crowding problem and the optimization problems of
SNE.

In this section, we first discuss the symmetric version of SNE (Section 3.1). Subsequently, we discuss
the crowding problem (Section 3.2), and the use of heavy-tailed distributions to address this problem

4Picking the best map after several runs as visualization of the data is not nearly as problematic as picking the model
that does best on a test set during supervised learning. In visualization, the aim is to see the structure in the training data,
not to generalize to held out test data.

5

(Section 3.3). We conclude the by describing our approach to the optimization of the t-SNE cost
function (Section 3.4).

3.1 Symmetric SNE

As an alternative to minimizing the sum of the Kullback-Leibler divergences between the conditional
probabilities 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖, it is also possible to minimize a single Kullback-Leibler divergence between
a joint probability distribution, 𝑃, in the high-dimensional space and a joint probability distribution,
𝑄, in the low-dimensional space:

𝐶 = 𝐾𝐿(𝑃‖𝑄) = ∑
𝑖
∑
𝑗
𝑝𝑖𝑗 log

𝑝𝑖𝑗
𝑞𝑖𝑗

,

where again, we set 𝑝𝑖𝑗 and 𝑞𝑖𝑖 to zero. We refer to this type of SNE as symmetric SNE, because it has
the property that 𝑝𝑖𝑗 = 𝑝𝑗𝑖 and 𝑞𝑖𝑗 = 𝑞𝑗𝑖 for all 𝑖, 𝑗. In symmetric SNE, the pairwise similarities in the
low-dimensional map 𝑞𝑖𝑗 are given by

𝑞𝑖𝑗 =
exp(−‖𝑥𝑖 − 𝑥𝑗‖2)

∑𝑘≠𝑙 exp(−‖𝑥𝑘 − 𝑥𝑙‖2)
. (3)

The obvious way to define the pairwise similarities in the high-dimensional space 𝑝𝑖𝑗 is

𝑝𝑖𝑗 =
exp(−‖𝑥𝑖 − 𝑥𝑗‖2/2𝜎2)

∑𝑘≠𝑙 exp(−‖𝑥𝑘 − 𝑥𝑙‖2/2𝜎2)

but this causes problems when a high-dimensional datapoint 𝑥𝑖 is an outlier (i.e., all pairwise distances
‖𝑥𝑖 − 𝑥𝑗‖2 are large for 𝑥𝑖). For such an outlier, the values of 𝑝𝑖𝑗 are extremely small for all 𝑗, so the
location of its low-dimensional map point 𝑦𝑖 has very little effect on the cost function. As a result,
the position of the map point is not well determined by the positions of the other map points. We
circumvent this problem by defining the joint probabilities 𝑝𝑖𝑗 in the high dimensional space to be
symmetrized conditional probabilities, that is, we set 𝑝𝑖𝑗 =

𝑝𝑗|𝑖+𝑝𝑖|𝑗
2𝑛 . This ensures that∑𝑗 𝑝𝑖𝑗 >

1
2𝑛 for

all datapoints 𝑥𝑖, as a result of which each datapoint 𝑥𝑖 makes a significant contribution to the cost
function. In the low-dimensional space, symmetric SNE simply uses Equation 3. The main advantage
of the symmetric version of SNE is the simpler form of its gradient, which is faster to compute. The
gradient of symmetric SNE is fairly similar to that of asymmetric SNE, and is given by

𝜕𝐶
𝜕𝑦𝑖

= 4∑
𝑗
(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗) .

In preliminary experiments, we observed that symmetric SNE seems to produce maps that are just as
good as asymmetric SNE, and sometimes even a little better.

3.2 The Crowding Problem

Consider a set of datapoints that lie on a two-dimensional curved manifold which is approximately
linear on a small scale, and which is embedded within a higher-dimensional space. It is possible
to model the small pairwise distances between datapoints fairly well in a two-dimensional map,
which is often illustrated on toy examples such as the “Swiss roll” data set. Now suppose that the
manifold has ten intrinsic dimensions[^dataset] and is embedded within a space of much higher

6

dimensionality. There are several reasons why the pairwise distances in a two-dimensional map
cannot faithfully model distances between points on the ten-dimensional manifold. For instance,
in ten dimensions, it is possible to have 11 datapoints that are mutually equidistant and there is
no way to model this faithfully in a two-dimensional map. A related problem is the very different
distribution of pairwise distances in the two spaces. The volume of a sphere centered on datapoint
𝑖 scales as 𝑟𝑚, where 𝑟 is the radius and 𝑚 the dimensionality of the sphere. So if the datapoints
are approximately uniformly distributed in the region around 𝑖 on the ten-dimensional manifold,
we get the following “crowding problem:” the area of the two-dimensional map that is available
to accommodate moderately distant datapoints will not be nearly large enough compared with the
area available to accommodate nearby datapoints. Hence, if we want to model the small distances
accurately in the map, most of the points that are at a moderate distance from datapoint 𝑖 will have to
be placed much too far away in the two-dimensional map. In SNE, the spring connecting datapoint 𝑖
to each of these too-distant map points will thus exert a very small attractive force. Although these
attractive forces are very small, the very large number of such forces crushes together the points
in the center of the map, which prevents gaps from forming between the natural clusters. Note
that the crowding problem is not specific to SNE, but that it occurs in other local techniques for
multidimensional scaling such as Sammon mapping.

An attempt to address the crowding problem by adding a slight repulsion to all springs was presented
by Cook et al. (2007). The slight repulsion is created by introducing a uniform background model
with a small mixing proportion, 𝜌. So however far apart two map points are, 𝑞𝑖𝑗 can never fall
below 2𝜌

𝑛(𝑛−1) (because the uniform background distribution is over 𝑛(𝑛 − 1)/2 pairs). As a result, for
datapoints that are far apart in the high-dimensional space, 𝑞𝑖𝑗 will always be larger than 𝑝𝑖𝑗, leading
to a slight repulsion. This technique is called UNI-SNE and although it usually outperforms standard
SNE, the optimization of the UNI-SNE cost function is tedious. The best optimization method known
is to start by setting the background mixing proportion to zero (i.e., by performing standard SNE).
Once the SNE cost function has been optimized using simulated annealing, the background mixing
proportion can be increased to allow some gaps to form between natural clusters as shown by Cook
et al. (2007). Optimizing the UNI-SNE cost function directly does not work because two map points
that are far apart will get almost all of their 𝑞𝑖 from the uniform background. So even if their 𝑝𝑖𝑗 is
large, there will be no attractive force between them, because a small change in their separation
will have a vanishingly small proportional effect on 𝑞𝑖𝑗. This means that if two parts of a cluster get
separated early on in the optimization, there is no force to pull them back together.

3.3 Mismatched tails can compensate for mismatched dimensionalities

Since symmetric SNE is actually matching the joint probabilities of pairs of datapoints in the high-
dimensional and the low-dimensional spaces rather than their distances, we have a natural way of
alleviating the crowing problem that works as follows. In the high-dimensional space, we convert
distances into probabilities using a Gaussian distribution. In the low-dimensional map, we can use
a probability distribution that has a much heavier tails than a Gaussian to convert distances into
probabilities. This allows a moderate distance in the high-dimensional space to be faithfully modeled
by a much larger distance in the map and, as a result, it eliminates the unwanted attractive forces
between map points that represent moderately dissimilar datapoints.

In t-SNE, we employ a Student 𝑡-distribution with a single degree of freedom (which is the same
as a Cauchy distribution) as the heavy-tailed distribution in the low-dimensional map. Using this
distribution, the joint probabilities 𝑞𝑖𝑗 are defined as

𝑞𝑖𝑗 =
(1 + ‖𝑦𝑖 − 𝑦𝑗‖2)−1

∑𝑘≠𝑙(1 + ‖𝑦𝑘 − 𝑦𝑡‖2)−1
(4)

7

We use a Student t-distribution with a single degree of freedom, because it has the particularly nice
property that (1 + ‖𝑦𝑖 − 𝑦𝑗‖2)

−1 approaches an inverse square law for large pairwise distances ‖𝑦𝑖−𝑦𝑗‖
in the low-dimensional map. This makes the map’s representation of joint probabilities (almost)
invariant to changes in the scale of the map for map points that are far apart. It also means that
large clusters of points that are far apart interact in just the same way as individual points, so the
optimization operates in the same way at all but the finest scales. A theoretical justification for our
selection of the Student 𝑡-distribution is that it is closely related to the Gaussian distribution, as the
Student 𝑡-distribution is an infinite mixture of Gaussians. A computationally convenient property is
that it is much faster to evaluate the density of a point under a Student 𝑡-distribution than under
a Gaussian because it does not involve an exponential, even though the Student 𝑡-distribution is
equivalent to an infinite mixture of Gaussians with different variances.

The gradient of the Kullback-Leibler divergence between 𝑃 and the Student-𝑡 based joint probability
distribution 𝑄 (computed using Equation 4) is derived in Appendix A, and is given by

𝜕𝐶
𝜕𝑦𝑖

= 4∑
𝑗
(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)(1 + ‖𝑦𝑖 − 𝑦𝑗‖2)−1 . (5)

Figure 1: Gradients of three types of SNE as a function of the pairwise Euclidean distance between two
points in the high-dimensional and the pairwise distance between the points in the low-dimensional
data representation.

In Figure 1, we show the gradients between the low-dimensional datapoints 𝑦𝑖 and 𝑦𝑗 as a function
of their pairwise Euclidean distances in the high-dimensional and the low-dimensional space (i.e.,
as a function of ‖𝑥𝑖 − 𝑥𝑗‖ and ‖𝑦𝑖 − 𝑦𝑗‖) for the symmetric versions of SNE, UNI-SNE, and t-SNE. In
the figures, positive values of the gradient represent an attraction between the low-dimensional
datapoints 𝑦𝑖 and 𝑦𝑗, whereas negative values represent a repulsion between the two datapoints.
From the figures, we observe two main advantages of the t-SNE gradient over the gradients of SNE
and UNI-SNE.

First, the t-SNE gradient strongly repels dissimilar datapoints that are modeled by a small pairwise
distance in the low-dimensional representation. SNE has such repulsion as well, but its effect is
minimal compared to the strong attractions elsewhere in the gradient (the largest attraction in
our graphical representation of the gradient is approximately 19, whereas the largest repulsion is
approximately 1). In UNI-SNE, the amount of repulsion between dissimilar datapoints is slightly
larger, however, this repulsion is only strong when the pairwise distance between the points in
the low-dimensional representation is already large (which is often not the case, since the low-
dimensional representation is initialized by sampling from a Gaussian with a very small variance
that is centered around the origin).

8

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are modeled
by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE differs from
UNI-SNE, in which the strength of the repulsion between very dissimilar datapoints is proportional
to their pairwise distance in the low-dimensional map, which may cause dissimilar datapoints to
move much too far away from each other.

Taken together, t-SNE puts emphasis on (1) modeling dissimilar datapoints by means of large pairwise
distances, and (2) modeling similar datapoints by means of small pairwise distances. Moreover, as a
result of these characteristics of the t-SNE cost function (and as a result of the approximate scale
invariance of the Student t-distribution), the optimization of the t-SNE cost function is much easier
than the optimization of the cost functions of SNE and UNI-SNE. Specifically, t-SNE introduces
long-range forces in the low-dimensional map that can pull back together two (clusters of) similar
points that get separated early on in the optimization. SNE and UNI-SNE do not have such long-range
forces, as a result of which SNE and UNI-SNE need to use simulated annealing to obtain reasonable
solutions. Instead, the long-range forces in t-SNE facilitate the identification of good local optima
without resorting to simulated annealing

Algorithm 1 Simple version of t-Distributed Stochastic Neighbor Embeding
1: Data: high-dimensional representation 𝒳 = {𝑥1, … , 𝑥𝑛}
2: cost function parameters: perplexity 𝑃𝑒𝑟𝑝
3: optimization parameters: number of iterations 𝑇, learning rate 𝜂, momentum 𝛼(𝑡)
4: Result: low-dimensional data representation𝒴 (𝑇) = {𝑦1, … , 𝑦𝑛}
5: procedure t-sne(𝑃𝑒𝑟𝑝, 𝑇 , 𝜂, 𝛼(𝑡))
6: compute pairwise affinities 𝑝𝑗|𝑖 with perplexity 𝑃𝑒𝑟𝑝 (using Equation 1)
7: set 𝑝𝑖𝑗 =

1
2𝑛 (𝑝𝑗|𝑖 + 𝑝𝑖|𝑗)

8: sample initial solution𝒴 (0) = {𝑦1, … , 𝑦𝑛} from 𝒩 (0, 1𝑒−4𝐼)
9: for 𝑡 = 0…𝑇 do
10: compute low-dimensional affinities 𝑞𝑖𝑗 (using Equation 4)
11: compute gradient 𝜕𝐶

𝜕𝒴 (using Equation 5)

12: et 𝒴 𝑡 = 𝒴 𝑡−1 + 𝜂 𝜕𝐶
𝜕𝒴 + 𝛼(𝑡) (𝒴 𝑡−1 −𝒴 𝑡−2)

13: end for
14: end procedure

3.4 Optimization methods for t-SNE

We start by presenting a relatively simple, gradient descent procedure for optimizing the t-SNE cost
function. This simple procedure uses a momentum term to reduce the number of iterations required
and it works best if the momentum term is small until the map points have become moderately
well organized. Pseudocode for this simple algorithm is presented in Algorithm 1 (FIXME: ref not
working). The simple algorithm can be sped up using the adaptive learning rate scheme that is
described by Jacobs (1988), which gradually increases the learning rate in directions in which the
gradient is stable.

Although the simple algorithm produces visualizations that are oftenmuch better than those produced
by other non-parametric dimensionality reduction techniques, the results can be improved further
by using either of two tricks. The first trick, which we call “early compression,” is to force the map
points to stay close together at the start of the optimization. When the distances between map points
are small, it is easy for clusters to move through one another so it is much easier to explore the
space of possible global organizations of the data. Early compression is implemented by adding an

9

additional L2-penalty to the cost function that is proportional to the sum of squared distances of
the map points from the origin. The magnitude of this penalty term and the iteration at which it is
removed are set by hand, but the behavior is fairly robust across variations in these two additional
optimization parameters.

A less obvious way to improve the optimization, which we call “early exaggeration,” is to multiply all
of the 𝑝𝑖𝑗’s by, for example, 4, in the initial stages of the optimization. This means that almost all of
the 𝑞𝑖𝑗’s, which still add up to 1, are much too small to model their corresponding 𝑝𝑖𝑗’s. As a result,
the optimization is encouraged to focus on modeling the large 𝑝𝑖𝑗’s by fairly large 𝑞𝑖𝑗’s. The effect is
that the natural clusters in the data tend to form tight widely separated clusters in the map. This
creates a lot of relatively empty space in the map, which makes it much easier for the clusters to
move around relative to one another in order to find a good global organization.

In all the visualizations presented in this paper and in the supporting material, we used exactly the
same optimization procedure. We used the early exaggeration method with an exaggeration of 4 for
the first 50 iterations (note that early exaggeration is not included in the pseudocode in Algorithm
1). The number of gradient descent iterations 𝑇 was set 1000, and the momentum term was set to
𝛼 (𝑡) = 0.5 for 𝑡 < 250 and 𝛼 (𝑡) = 0.8 for 𝑡 ≥ 250. The learning rate 𝜂 is initially set to 100 and it is
updated after every iteration by means of the adaptive learning rate scheme described by Jacobs (1988).
A Matlab implementation of the resulting algorithm is available at https://lvdmaaten.github.io/tsne/.

4 Experiments

To evaluate t-SNE, we present experiments in which t-SNE is compared to seven other non-parametric
techniques for dimensionality reduction. Because of space limitations, in the paper, we only compare
t-SNE with: (1) Sammon mapping, (2) Isomap, and (3) LLE. In the supporting material, we also
compare t-SNE with: (4) CCA, (5) SNE, (6) MVU, and (7) Laplacian Eigenmaps. We performed
experiments on five data sets that represent a variety of application domains. Again, because of
space limitations, we restrict ourselves to three data sets in the paper. The results of our experiments
on the remaining two data sets are presented in the supplementary material.

In Section 4.1, the data sets that we employed in our experiments are introduced. The setup of the
experiments is presented in Section 4.2. In Section 4.3, we present the results of our experiments.

4.1 Data Sets

The five data sets we employed in our experiments are: (1) the MNIST data set, (2) the Olivetti faces
data set, (3) the COIL-20 data set, (4) the word-features data set, and (5) the Netflix data set. We only
present results on the first three data sets in this section. The results on the remaining two data sets
are presented in the supporting material. The first three data sets are introduced below.

The MNIST data set5 contains 60,000 grayscale images of handwritten digits. For our experiments, we
randomly selected 6,000 of the images for computational reasons. The digit images have 28×28 = 784
pixels (i.e., dimensions). The Olivetti faces data set6 consists of images of 40 individuals with small
variations in viewpoint, large variations in expression, and occasional addition of glasses. The data
set consists of 400 images (10 per individual) of size 92 × 112 = 10, 304 pixels, and is labeled according
to identity. The COIL-20 data set Nene, Nayar, and Murase (1996) contains images of 20 different
objects viewed from 72 equally spaced orientations, yielding a total of 1,440 images. The images
contain 32 × 32 = 1, 024 pixels.

5The MNIST data set is publicly available from http://yann.lecun.com/exdb/mnist/index.html.
6The Olivetti data set is publicly available from http://mambo.ucsc.edu/psl/olivetti.html.

10

https://lvdmaaten.github.io/tsne/
http://yann.lecun.com/exdb/mnist/index.html
http://mambo.ucsc.edu/psl/olivetti.html

4.2 Experimental Setup

In all of our experiments, we start by using PCA to reduce the dimensionality of the data to 30.
This speeds up the computation of pairwise distances between the datapoints and suppresses some
noise without severely distorting the interpoint distances. We then use each of the dimensionality
reduction techniques to convert the 30-dimensional representation to a two-dimensional map and
we show the resulting map as a scatterplot. For all of the data sets, there is information about the
class of each datapoint, but the class information is only used to select a color and/or symbol for the
map points. The class information is not used to determine the spatial coordinates of the map points.
The coloring thus provides a way of evaluating how well the map preserves the similarities within
each class.

The cost function parameter settings we employed in our experiments are listed in Table 1. In the
table, 𝑃𝑒𝑟𝑝 represents the perplexity of the conditional probability distribution induced by a Gaussian
kernel and 𝑘 represents the number of nearest neighbors employed in a neighborhood graph. In the
experiments with Isomap and LLE, we only visualize datapoints that correspond to vertices in the
largest connected component of the neighborhood graph. 7 For the Sammon mapping optimization,
we performed Newton’s method for 500 iterations.

Table 1: Cost function parameter settings for the experiments

Technique Cost function parameters

t-SNE 𝑃𝑒𝑟𝑝 = 40
Sammon mapping none
Isomap 𝑘 = 12
LLE 𝑘 = 12

4.3 Results

INFO Note

Note from Computo editor: the following code define functions that will be used to run
the various approaches, save/load the results and draw the result graphs. In order to save
computational time, the code lauching the various approaches is not run during paper build.
Results are rather saved into CSV files that are loaded to render the figures.

INFO Note

Note from Computo editor: we sub-samples 2000 images from the MNIST dataset instead of
6000 like in the original publication to save computing time.

OpenML configuration:
server : http://www.openml.org/api/v1
cachedir : ~/.cache/OpenML
verbosity : 1
arff.reader : farff
confirm.upload : TRUE
apikey : ***************************47f1f

7Isomap and LLE require data that gives rise to a neighborhood graph that is connected.

11

class

0

1

2

3

4

5

6

7

8

9

T−SNE

(a)

Sammon

(b)

Figure 2: Visualization by t-SNE and Sammon mapping

Isomap

(a)

LLE

(b)

Figure 3: Visualization by Isomap and LLE

12

INFO Note

Note from Computo editor: the original Olivetti dataset contains 400 images of resolution 92
× 112 = 10,304 pixels. Here we use a modified version of the dataset with rescaled images of
resolution 64 × 64 = 4,096 pixels.

.

.

.

. .
.

.

.

.

.

.
..
.

.
.

.
.

.

.

. ..

..

.

.. ..

.

.

.

. .
.

.

.

.

.

.

..

.

..

.
.
.

.

...
..

.
.

.
.

.
..

.

..

.

..

.

.

..

.

.

.
.

.

.

.
.

. ..

..
.
.
.

. .

..

..
.
..

.

.

.

.
..

.

.
..

.

.
.

.

..
..

.

.

...

..

.. .

.. .
..

.

..

..

.

.
.

.
.

. .

..
.

.
.. ..

...
..

.

.

.
.

.

..

..

.

..

.

.
.

.
.. ..

.
.

.
.

.

...

..

.

..
.

.

.. .
.

.

.

. ..

.

.
..

.
..

..

.

.

...

.
. .
.

. ..

. .

.

.

.

.

.

.

.
.

..

.
.

.

...

..

.
.

.
..

.
.

.

. .

.. .
...

.

..
.

.

.
.. .
.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.. .

.
. ..

.

.
.

.

.

.

..

.

. .
. .

.

....

. .. .

.

.

..

.

.

.

.
.. .

.
.

.
.

.

.
..

.

..

.

.

.. .

..

.

.

.

...

.
.

.

...

.

...
.

.

..
.. .
.

.

..

.

.

.

.
.

.

.

.. ..

.
.

.. .
.

.

. .

.

.

.

.

.

.

.

T−SNE

(a)

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

..

.

.

.

. .

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.
.

.

..

.

.

.

.

.

.

.

. .

. .
.
.

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

. .

.

.

.

.

.

.

.

.
.

..

.

....

. .

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.
.

.

..

.

. .

.

.

..
.

. .. .

. .

.

.

.

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.
. .

.

.
.

.

.
.

.

.

.

.

.

.

.

..

. .

. .

.

.

.

.

.
. .

.

.. .
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

. .

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.
. .

.

.

..

.

.

.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

. .

.

.

.

. .

.

..
.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

..

..

.

..

.

.

.

.

.

.

.

. ..

.

.

.

.
.. .

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.

. .

.

.

.

.

. .

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

Sammon

(b)

.

.

.

.

.

.

. .

.

.
.

. .

.

.

..

. ..

.

.

.

.

.

.

.

.

.
. .

.

..

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..
...

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

. .

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

..

.

.
..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
. .

..

.

.
.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

..

..

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

..
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

..
.

.

.
.

.

.

.
.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

..

.

.

.

.

.

.

.

.

.

.

.
..

..

. .

.

.

. .

.

.

.

.

.

.

Isomap

(c)

.

.

..
.
....
.

..
.

.
.

.....

..
.
.

.
.. .. .

.
.

....
..

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.
.

.

.
.

.
...
..

..
...

.
.

..
.
..
...

.

..

.

.

..

.

.

.

. .
..

......
..

.
.

.
...........

.

.

..

.

.

.

.

.
.

.
..

.

.

.

.
...

....
.

.

.

.

.

.

.

.

.

.

.

.

..
. .. .

.... .
.

.

...
. .

.
.

.. ..
.

.
. ...

..
.
.
.
.
..
. .

.. ..

.

..
. ..

. ..

.
..
. .
..
....
.
.

....

...

.

.

.

.

.

..

. ..
... ..

.
.

.
.
.

.

..
..

.

.

.
.

.

.

..

.

.

.

.

.

..

. .. .
.

.
. .. .

. .
.

..
.

.
...

..

.
.

.
...
..

.

...

.

.
.

.
. .

.
.........

...
..

.
..
.

.
.

.

.
. .

LLE

(d)

Figure 4: Visualization of the Olivetti faces data set

In Figure 2 and Figure 3, we show the results of our experiments with t-SNE, Sammon mapping,
Isomap, and LLE on the MNIST data set. The results reveal the strong performance of t-SNE compared
to the other techniques. In particular, Sammon mapping constructs a “ball” in which only three
classes (representing the digits 0, 1, and 7) are somewhat separated from the other classes. Isomap
and LLE produce solutions in which there are large overlaps between the digit classes. In contrast,
tSNE constructs a map in which the separation between the digit classes is almost perfect. Moreover,
detailed inspection of the t-SNE map reveals that much of the local structure of the data (such as
the orientation of the ones) is captured as well. This is illustrated in more detail in Section 5 (see
Figure 6). The map produced by t-SNE contains some points that are clustered with the wrong class,
but most of these points correspond to distorted digits many of which are difficult to identify. Figure 4
shows the results of applying t-SNE, Sammon mapping, Isomap, and LLE to the Olivetti faces data
set. Again, Isomap and LLE produce solutions that provide little insight into the class structure of
the data. The map constructed by Sammon mapping is significantly better, since it models many
of the members of each class fairly close together, but none of the classes are clearly separated in
the Sammon map. In contrast, t-SNE does a much better job of revealing the natural classes in the
data. Some individuals have their ten images split into two clusters, usually because a subset of
the images have the head facing in a significantly different direction, or because they have a very
different expression or glasses. For these individuals, it is not clear that their ten images form a

13

natural class when using Euclidean distance in pixel space.

Figure 5 shows the results of applying t-SNE, Sammon mapping, Isomap, and LLE to the COIL20
data set. For many of the 20 objects, t-SNE accurately represents the one-dimensional manifold
of viewpoints as a closed loop. For objects which look similar from the front and the back, t-SNE
distorts the loop so that the images of front and back are mapped to nearby points. For the four types
of toy car in the COIL-20 data set (the four aligned “sausages” in the bottom-left of the tSNE map),
the four rotation manifolds are aligned by the orientation of the cars to capture the high similarity
between different cars at the same orientation. This prevents t-SNE from keeping the four manifolds
clearly separate. Figure 5 also reveals that the other three techniques are not nearly as good at cleanly
separating the manifolds that correspond to very different objects. In addition, Isomap and LLE
only visualize a small number of classes from the COIL-20 data set, because the data set comprises a
large number of widely separated submanifolds that give rise to small connected components in the
neighborhood graph.

5 Applying t-SNE to Large Data Sets

Like many other visualization techniques, t-SNE has a computational and memory complexity that
is quadratic in the number of datapoints. This makes it infeasible to apply the standard version
of t-SNE to data sets that contain many more than, say, 10,000 points. Obviously, it is possible to
pick a random subset of the datapoints and display them using t-SNE, but such an approach fails to
make use of the information that the undisplayed datapoints provide about the underlying manifolds.
Suppose, for example, that A, B, and C are all equidistant in the high-dimensional space. If there
are many undisplayed datapoints between A and B and none between A and C, it is much more
likely that A and B are part of the same cluster than A and C. This is illustrated in Figure 5. In this
section, we show how t-SNE can be modified to display a random subset of the datapoints (so-called
landmark points) in a way that uses information from the entire (possibly very large) data set.

We start by choosing a desired number of neighbors and creating a neighborhood graph for all of
the datapoints. Although this is computationally intensive, it is only done once. Then, for each of
the landmark points, we define a random walk starting at that landmark point and terminating as
soon as it lands on another landmark point. During a random walk, the probability of choosing an
edge emanating from node xi to node x j is proportional to 𝑒−‖𝑥𝑖−𝑥𝑗‖

2
. We define 𝑝𝑗|𝑖 to be the fraction

of random walks starting at landmark point 𝑥𝑖 that terminate at landmark point 𝑥𝑗 . This has some
resemblance to the way Isomap measures pairwise distances between points. However, as in diffusion
maps Lafon and Lee (2006),Nadler et al. (2006), rather than looking for the shortest path through the
neighborhood graph, the random walk-based affinity measure integrates over all paths through the
neighborhood graph. As a result, the random walk-based affinity measure is much less sensitive to
“short-circuits” John Aldo Lee and Verleysen (2005), in which a single noisy datapoint provides a
bridge between two regions of dataspace that should be far apart in the map. Similar approaches
using random walks have also been successfully applied to, for example, semi-supervised learning
Szummer and Jaakkola (2002),Zhu, Ghahramani, and Lafferty (2003) and image segmentation Grady
(2006).

The most obvious way to compute the random walk-based similarities 𝑝𝑗|𝑖 is to explicitly perform
the random walks on the neighborhood graph, which works very well in practice, given that one
can easily perform one million random walks per second. Alternatively, Grady (2006) presents an
analytical solution to compute the pairwise similarities 𝑝𝑗|𝑖 that involves solving a sparse linear
system. The analytical solution to compute the similarities 𝑝𝑗|𝑖 is sketched in Appendix B (FIXME).
In preliminary experiments, we did not find significant differences between performing the random
walks explicitly and the analytical solution. In the experiment we present below, we explicitly

14

Figure 5: An illustration of the advantage of the random walk version of t-SNE over a standard
landmark approach. The shaded points A, B, and C are three (almost) equidistant landmark points,
whereas the non-shaded datapoints are non-landmark points. The arrows represent a directed
neighborhood graph where 𝑘 = 3. In a standard landmark approach, the pairwise affinity between A
and B is approximately equal to the pairwise affinity between A and C. In the random walk version
of t-SNE, the pairwise affinity between A and B is much larger than the pairwise affinity between A
and C, and therefore, it reflects the structure of the data much better.

15

performed the random walks because this is computationally less expensive. However, for very
large data sets in which the landmark points are very sparse, the analytical solution may be more
appropriate.

INFO Note

Note from Computo editor: Please note that (i) this dataset is too large for the code to be pro-
cessed through continuous integration ; (ii) we did not reimplement this particular experiment
(using random walk-based similarities). Only the result figure is joined.

Figure 6: Visualization of 6,000 digits from the MNIST data set produced by the random walk version
of t-SNE (employing all 60,000 digit images).

Figure 6 shows the results of an experiment, in which we applied the random walk version of t-SNE

16

to 6,000 randomly selected digits from the MNIST data set, using all 60,000 digits to compute the
pairwise affinities 𝑝𝑗|𝑖. In the experiment, we used a neighborhood graph that was constructed using
a value of 𝑘 = 20 nearest neighbors.8 The inset of the figure shows the same visualization as a
scatterplot in which the colors represent the labels of the digits. In the t-SNEmap, all classes are clearly
separated and the “continental” sevens form a small separate cluster. Moreover, t-SNE reveals themain
dimensions of variation within each class, such as the orientation of the ones, fours, sevens, and nines,
or the “loopiness” of the twos. The strong performance of t-SNE is also reflected in the generalization
error of nearest neighbor classifiers that are trained on the low-dimensional representation. Whereas
the generalization error (measured using 10-fold cross validation) of a 1-nearest neighbor classifier
trained on the original 784-dimensional datapoints is 5.75%, the generalization error of a 1-nearest
neighbor classifier trained on the two-dimensional data representation produced by t-SNE is only
5.13%. The computational requirements of random walk t-SNE are reasonable: it took only one hour
of CPU time to construct the map in Figure 6.

6 Discussion

The results in the previous two sections (and those in the supplemental material) demonstrate the
performance of t-SNE on awide variety of data sets. In this section, we discuss the differences between
t-SNE and other non-parametric techniques (6.1), and we also discuss a number of weaknesses and
possible improvements of t-SNE (6.2).

6.1 Comparison with Related Techniques

Classical scaling Torgerson (1952), which is closely related to PCA Mardia and Bibby (1979) Williams
(2002), finds a linear transformation of the data that minimizes the sum of the squared errors between
high-dimensional pairwise distances and their low-dimensional representatives. A linear method
such as classical scaling is not good at modeling curved manifolds and it focuses on preserving the
distances between widely separated datapoints rather than on preserving the distances between
nearby datapoints. An important approach that attempts to address the problems of classical scaling
is the Sammon mapping Sammon (1969) which alters the cost function of classical scaling by dividing
the squared error in the representation of each pairwise Euclidean distance by the original Euclidean
distance in the high-dimensional space. The resulting cost function is given by

𝐶 = 1
∑𝑖𝑗 ‖𝑥𝑖 − 𝑥𝑗‖

∑
𝑖≠𝑗

(‖𝑥𝑖 − 𝑥𝑗‖ − ‖𝑥𝑖 − 𝑥𝑗‖)
2

‖𝑥𝑖 − 𝑥𝑗‖

where the constant outside of the sum is added in order to simplify the derivation of the gradient.
The main weakness of the Sammon cost function is that the importance of retaining small pairwise
distances in themap is largely dependent on small differences in these pairwise distances. In particular,
a small error in the model of two high-dimensional points that are extremely close together results
in a large contribution to the cost function. Since all small pairwise distances constitute the local
structure of the data, it seems more appropriate to aim to assign approximately equal importance to
all small pairwise distances.

In contrast to Sammon mapping, the Gaussian kernel employed in the high-dimensional space by t-
SNE defines a soft border between the local and global structure of the data and for pairs of datapoints
that are close together relative to the standard deviation of the Gaussian, the importance of modeling
their separations is almost independent of the magnitudes of those separations. Moreover, t-SNE

8In preliminary experiments, we found the performance of random walk t-SNE to be very robust under changes of 𝑘.

17

determines the local neighborhood size for each datapoint separately based on the local density of
the data (by forcing each conditional probability distribution 𝑃𝑖 to have the same perplexity).

The strong performance of t-SNE compared to Isomap is partly explained by Isomap’s susceptibility
to “short-circuiting”. Also, Isomap mainly focuses on modeling large geodesic distances rather than
small ones.

The strong performance of t-SNE compared to LLE is mainly due to a basic weakness of LLE: the
only thing that prevents all datapoints from collapsing onto a single point is a constraint on the
covariance of the low-dimensional representation. In practice, this constraint is often satisfied by
placing most of the map points near the center of the map and using a few widely scattered points to
create large covariance (see Figure FIXME). For neighborhood graphs that are almost disconnected,
the covariance constraint can also be satisfied by a “curdled” map in which there are a few widely
separated, collapsed subsets corresponding to the almost disconnected components. Furthermore,
neighborhood-graph based techniques (such as Isomap and LLE) are not capable of visualizing data
that consists of two or more widely separated submanifolds, because such data does not give rise
to a connected neighborhood graph. It is possible to produce a separate map for each connected
component, but this loses information about the relative similarities of the separate components.

Like Isomap and LLE, the randomwalk version of t-SNE employs neighborhood graphs, but it does not
suffer from short-circuiting problems because the pairwise similarities between the highdimensional
datapoints are computed by integrating over all paths through the neighborhood graph. Because
of the diffusion-based interpretation of the conditional probabilities underlying the random walk
version of t-SNE, it is useful to compare t-SNE to diffusion maps. Diffusion maps define a “diffusion
distance” on the high-dimensional datapoints that is given by

𝐷(𝑡)(𝑥𝑖, 𝑥𝑗) =
√
∑
𝑘

(𝑝(𝑡)𝑖𝑘 − 𝑝(𝑡)𝑗𝑘)
2
)

𝜓 (𝑥𝑘)(0)

where 𝑝(𝑡)𝑖𝑗 represents the probability of a particle traveling from 𝑥𝑖 to 𝑥𝑗 in 𝑡 timesteps through a graph
on the data with Gaussian emission probabilities. The term 𝜓(𝑥𝑘)(0) is a measure for the local density
of the points, and serves a similar purpose to the fixed perplexity Gaussian kernel that is employed
in SNE. The diffusion map is formed by the principal non-trivial eigenvectors of the Markov matrix
of the random walks of length 𝑡. It can be shown that when all (𝑛 − 1) non-trivial eigenvectors are
employed, the Euclidean distances in the diffusion map are equal to the diffusion distances in the
high-dimensional data representation Lafon and Lee (2006). Mathematically, diffusion maps minimize

𝐶 = ∑
𝑖
∑
𝑗
(𝐷(𝑡)(𝑥𝑖, 𝑥𝑗) − ‖𝑦𝑖 − 𝑦𝑗‖)

2

As a result, diffusion maps are susceptible to the same problems as classical scaling: they assign
much higher importance to modeling the large pairwise diffusion distances than the small ones and
as a result, they are not good at retaining the local structure of the data. Moreover, in contrast to the
random walk version of t-SNE, diffusion maps do not have a natural way of selecting the length, 𝑡, of
the random walks.

In the supplemental material, we present results that reveal that t-SNE outperforms CCA Demartines
and Herault (1997), MVU Kilian Q. Weinberger, Sha, and Saul (2004), and Laplacian Eigenmaps Belkin
and Niyogi (2001) as well. For CCA and the closely related CDA John Aldo Lee et al. (2000), these
results can be partially explained by the hard border 𝜆 that these techniques define between local and

18

global structure, as opposed to the soft border of t-SNE. Moreover, within the range 𝜆, CCA suffers
from the same weakness as Sammon mapping: it assigns extremely high importance to modeling the
distance between two datapoints that are extremely close.

Like t-SNE, MVU Kilian Q. Weinberger, Sha, and Saul (2004) tries to model all of the small separations
well but MVU insists on modeling them perfectly (i.e., it treats them as constraints) and a single
erroneous constraint may severely affect the performance of MVU. This can occur when there is
a short-circuit between two parts of a curved manifold that are far apart in the intrinsic manifold
coordinates. Also, MVU makes no attempt to model longer range structure: It simply pulls the map
points as far apart as possible subject to the hard constraints so, unlike t-SNE, it cannot be expected
to produce sensible large-scale structure in the map.

For Laplacian Eigenmaps, the poor results relative to t-SNE may be explained by the fact that
Laplacian Eigenmaps have the same covariance constraint as LLE, and it is easy to cheat on this
constraint.

6.2 Weakness

Although we have shown that t-SNE comparesfavorably to other techniquesfor data visualization,
tSNE has three potential weaknesses: (1) it is unclear how t-SNE performs on general dimensionality
reduction tasks, (2) the relatively local nature of t-SNE makes it sensitive to the curse of the intrinsic
dimensionality of the data, and (3) t-SNE is not guaranteed to converge to a global optimum of its
cost function. Below, we discuss the three weaknesses in more detail.

1. Dimensionality reduction for other purposes. It is not obvious how t-SNE will perform on the
more general task of dimensionality reduction (i.e., when the dimensionality of the data is not
reduced to two or three, but to 𝑑 > 3 dimensions). To simplify evaluation issues, this paper
only considers the use of t-SNE for data visualization. The behavior of t-SNE when reducing
data to two or three dimensions cannot readily be extrapolated to 𝑑 > 3 dimensions because
of the heavy tails of the Student-t distribution. In high-dimensional spaces, the heavy tails
comprise a relatively large portion of the probability mass under the Student-t distribution,
which might lead to d-dimensional data representations that do not preserve the local structure
of the data as well. Hence, for tasks in which the dimensionality of the data needs to be reduced
to a dimensionality higher than three, Student t-distributions with more than one degree of
freedom10 are likely to be more appropriate.

2. Curse of intrinsic dimensionality. t-SNE reduces the dimensionality of data mainly based on local
properties of the data, which makes t-SNE sensitive to the curse of the intrinsic dimensionality
of the data Bengio (2009). In data sets with a high intrinsic dimensionality and an underlying
manifold that is highly varying, the local linearity assumption on the manifold that t-SNE
implicitly makes (by employing Euclidean distances between near neighbors) may be violated.
As a result, t-SNE might be less successful if it is applied on data sets with a very high intrinsic
dimensionality (for instance, a recent study by Meytlis and Sirovich (2007) estimates the space
of images of faces to be constituted of approximately 100 dimensions). Manifold learners such
as Isomap and LLE suffer from exactly the same problems (see, e.g., Bengio (2009); Van Der
Maaten et al. (2009)). A possible way to (partially) address this issue is by performing t-SNE on
a data representation obtained from a model that represents the highly varying data manifold
efficiently in a number of nonlinear layers such as an autoencoder Hinton and Salakhutdinov
(2006). Such deep-layer architectures can represent complex nonlinear functions in a much
simpler way, and as a result, require fewer datapoints to learn an appropriate solution (as is
illustrated for a d-bits parity task by Bengio (2009)). Performing t-SNE on a data representation
produced by, for example, an autoencoder is likely to improve the quality of the constructed

19

visualizations, because autoencoders can identify highly-varying manifolds better than a local
method such as t-SNE. However, the reader should note that it is by definition impossible to
fully represent the structure of intrinsically high-dimensional data in two or three dimensions.

3. Non-convexity of the t-SNE cost function. A nice property of most state-of-the-art dimensionality
reduction techniques (such as classical scaling, Isomap, LLE, and diffusionmaps) is the convexity
of their cost functions. A major weakness of t-SNE is that the cost function is not convex, as a
result of which several optimization parameters need to be chosen. The constructed solutions
depend on these choices of optimization parameters and may be different each time t-SNE is
run from an initial random configuration of map points. We have demonstrated that the same
choice of optimization parameters can be used for a variety of different visualization tasks,
and we found that the quality of the optima does not vary much from run to run. Therefore,
we think that the weakness of the optimization method is insufficient reason to reject t-SNE
in favor of methods that lead to convex optimization problems but produce noticeably worse
visualizations. A local optimum of a cost function that accurately captures what we want
in a visualization is often preferable to the global optimum of a cost function that fails to
capture important aspects of what we want. Moreover, the convexity of cost functions can be
misleading, because their optimization is often computationally infeasible for large real-world
data sets, prompting the use of approximation techniques De Silva and Tenenbaum (2002);
Kilian Q. Weinberger et al. (2007). Even for LLE and Laplacian Eigenmaps, the optimization is
performed using iterative Arnoldi Arnoldi (1951) or Jacobi-Davidson Fokkema, Sleijpen, and
Van der Vorst (1998) methods, which may fail to find the global optimum due to convergence
problems.

7 Conclusions

The paper presents a new technique for the visualization of similarity data that is capable of retaining
the local structure of the data while also revealing some important global structure (such as clusters
at multiple scales). Both the computational and the memory complexity of t-SNE are 𝒪(𝑛2), but we
present a landmark approach that makes it possible to successfully visualize large real-world data
sets with limited computational demands. Our experiments on a variety of data sets show that t-SNE
outperforms existing state-of-the-art techniques for visualizing a variety of real-world data sets.
Matlab implementations of both the normal and the random walk version of t-SNE are available for
download at https://lvdmaaten.github.io/tsne/. In future work we plan to investigate the optimization
of the number of degrees of freedom of the Student-t distribution used in t-SNE. This may be helpful
for dimensionality reduction when the low-dimensional representation has many dimensions. We
will also investigate the extension of t-SNE to models in which each high-dimensional datapoint is
modeled by several low-dimensional map points as in Cook et al. (2007). Also, we aim to develop a
parametric version of t-SNE that allows for generalization to held-out test data by using the t-SNE
objective function to train a multilayer neural network that provides an explicit mapping to the
low-dimensional space

Acknowledgments

The authors thank Sam Roweis for many helpful discussions, Andriy Mnih for supplying the word-
features data set, Ruslan Salakhutdinov for help with the Netflix data set (results for these data sets
are presented in the supplemental material), and Guido de Croon for pointing us to the analytical
solution of the random walk probabilities.

Laurens van der Maaten is supported by the CATCH-programme of the Dutch Scientific Organization

20

https://lvdmaaten.github.io/tsne/

(NWO), project RICH (grant 640.002.401), and cooperates with RACM.
Geoffrey Hinton is a fellow of the Canadian Institute for Advanced Research, and is also supported
by grants from NSERC and CFI and gifts from Google and Microsoft.

References

Arnoldi, Walter Edwin. 1951. “The Principle of Minimized Iterations in the Solution of the Matrix
Eigenvalue Problem.” Quarterly of Applied Mathematics 9 (1): 17–29.

Belkin, Mikhail, and Partha Niyogi. 2001. “Laplacian Eigenmaps and Spectral Techniques for Embed-
ding and Clustering.” In Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, 585–91. Advances in Neural Information Processing
Systems. Cambridge, MA, USA: MIT Press.

Bengio, Yoshua. 2009. Learning Deep Architectures for AI. Now Publishers Inc.
Biggs, Norman. 1993. Algebraic Graph Theory. 67. Cambridge university press.
Chernoff, Herman. 1973. “The Use of Faces to Represent Points in k-Dimensional Space Graphically.”

Journal of the American Statistical Association 68 (342): 361–68. http://www.jstor.org/stable/
2284077.

Cook, James, Ilya Sutskever, Andriy Mnih, and Geoffrey Hinton. 2007. “Visualizing Similarity
Data with a Mixture of Maps.” In In Proceedings of the 11th International Conference on Artificial
Intelligence and Statistics, 2:67–74. PMLR.

De Silva, Vin, and Joshua B Tenenbaum. 2002. “Global Versus Local Methods in Nonlinear Dimen-
sionality Reduction.” In Advances in Neural Information Processing Systems, 15:705–12.

Demartines, P., and J. Herault. 1997. “Curvilinear Component Analysis: A Self-Organizing Neural
Network for Nonlinear Mapping of Data Sets.” IEEE Transactions on Neural Networks 8 (1): 148–54.
https://doi.org/10.1109/72.554199.

Di Battista, Giuseppe, Peter Eades, Roberto Tamassia, and Ioannis G Tollisi. 1994. “Algorithms
for Drawing Graphs: An Annotated Bibliography.” Computational Geometry 4 (5): 235–82.
https://doi.org/https://doi.org/10.1016/0925-7721(94)00014-X.

Doyle, Peter G, and J Laurie Snell. 1984. Random Walks and Electric Networks. Vol. 22. American
Mathematical Soc.

Ferreira de Oliveira, M. C., and H. Levkowitz. 2003. “From Visual Data Exploration to Visual Data
Mining: A Survey.” IEEE Transactions on Visualization and Computer Graphics 9 (3): 378–94.
https://doi.org/10.1109/TVCG.2003.1207445.

Fokkema, Diederik R, Gerard LG Sleijpen, and Henk A Van der Vorst. 1998. “Jacobi–Davidson Style
QR and QZ Algorithms for the Reduction of Matrix Pencils.” SIAM Journal on Scientific Computing
20 (1): 94–125.

Grady, Leo. 2006. “Random Walks for Image Segmentation.” IEEE Transactions on Pattern Analysis
and Machine Intelligence 28 (11): 1768–83.

Hinton, Geoffrey E, and Sam Roweis. 2003. “Stochastic Neighbor Embedding.” In Advances in
Neural Information Processing Systems, edited by S. Becker, S. Thrun, and K. Obermayer. Vol. 15.
MIT Press. https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-
Paper.pdf.

Hinton, Geoffrey E, and Ruslan R Salakhutdinov. 2006. “Reducing the Dimensionality of Data with
Neural Networks.” Science 313 (5786): 504–7.

Hotelling, H. 1933. “Analysis of a Complex of Statistical Variables into Principal Components.”
Journal of Educational Psychology 24: 498–520.

Jacobs, Robert A. 1988. “Increased Rates of Convergence Through Learning Rate Adaptation.” Neural
Networks 1 (4): 295–307.

Kakutani, S. 1945. “Markov Processes and the Dirichlet Problem.” In Proceedings of the Japan Academy,
21:227–33.

21

http://www.jstor.org/stable/2284077
http://www.jstor.org/stable/2284077
https://doi.org/10.1109/72.554199
https://doi.org/10.1016/0925-7721(94)00014-X
https://doi.org/10.1109/TVCG.2003.1207445
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf

Keim, Daniel A. 2000. “Designing Pixel-Oriented Visualization Techniques: Theory and Applications.”
IEEE Transactions on Visualization and Computer Graphics 6 (1): 59–78. https://doi.org/10.1109/
2945.841121.

Lafon, Stephane, and Ann B Lee. 2006. “Diffusion Maps and Coarse-Graining: A Unified Frame-
work for Dimensionality Reduction, Graph Partitioning, and Data Set Parameterization.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 28 (9): 1393–403.

Lee, John Aldo, Amaury Lendasse, Nicolas Donckers, and Michel Verleysen. 2000. “A Robust
Nonlinear Projection Method.” In Proceedings of the 8th European Symposium on Artificial Neural
Networks, 13–20.

Lee, John Aldo, and Michel Verleysen. 2005. “Nonlinear Dimensionality Reduction of Data Manifolds
with Essential Loops.” Neurocomputing 67: 29–53.

Lee, John A., and Michel Verleysen. 2007. Nonlinear Dimensionality Reduction. 1st ed. Springer
Publishing Company, Incorporated.

Mardia, Kent, KV, and J Bibby. 1979. Multivariate Analysis. Academic Press Amsterdam.
Meytlis, Marsha, and Lawrence Sirovich. 2007. “On the Dimensionality of Face Space.” IEEE

Transactions on Pattern Analysis and Machine Intelligence 29 (7): 1262–67.
Nadler, B, S Lafon, RR Coifman, and IG Kevrekidis. 2006. “Diffusion Maps, Spectral Clustering, and

the Reaction Coordinates of Dynamical Systems.” Applied and Computational Harmonic Analysis:
Special Issue on Diffusion Maps and Wavelets 21: 113–27.

Nene, Sameer A, Shree K Nayar, and Hiroshi Murase. 1996. “Columbia Object Image Library
(COIL-20).” CUCS-005-96. Columbia University.

Roweis, Sam T., and Lawrence K. Saul. 2000. “Nonlinear Dimensionality Reduction by Locally Linear
Embedding.” Science 290 (5500): 2323–26. https://doi.org/10.1126/science.290.5500.2323.

Sammon, J. W. 1969. “A Nonlinear Mapping for Data Structure Analysis.” IEEE Transactions on
Computers C-18 (5): 401–9. https://doi.org/10.1109/T-C.1969.222678.

Song, Le, Alexander J Smola, Karsten M Borgwardt, and Arthur Gretton. 2008. “Colored Maximum
Variance Unfolding.” In Advances in Neural Information Processing Systems, edited by J. Platt, D.
Koller, Y. Singer, and S. Roweis. Vol. 20. Curran Associates, Inc. https://proceedings.neurips.cc/
paper/2007/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf.

Street, W. Nick, W. H. Wolberg, and O. L. Mangasarian. 1993. “Nuclear feature extraction for breast
tumor diagnosis.” In Biomedical Image Processing and Biomedical Visualization, edited by Raj S.
Acharya and Dmitry B. Goldgof, 1905:861–70. International Society for Optics; Photonics; SPIE.
https://doi.org/10.1117/12.148698.

Szummer, Martin, and Tommi Jaakkola. 2002. “Partially Labeled Classification with Markov Random
Walks.” Advances in Neural Information Processing Systems 14: 945–52.

Tenenbaum, Joshua B., Vin de Silva, and John C. Langford. 2000. “A Global Geometric Framework
for Nonlinear Dimensionality Reduction.” Science 290 (5500): 2319.

Torgerson, W. S. 1952. “Multidimensional Scaling: I. Theory and Method.” Psychometrika 17: 401–19.
Van Der Maaten, Laurens, Eric Postma, Jaap Van den Herik, et al. 2009. “Dimensionality Reduction:

A Comparative.” J Mach Learn Res 10 (66-71): 13.
Weinberger, Kilian Q., Fei Sha, and Lawrence K. Saul. 2004. “Learning a Kernel Matrix for Nonlinear

Dimensionality Reduction.” In Proceedings of the Twenty-First International Conference on Machine
Learning, 106. ICML ’04. New York, NY, USA: Association for Computing Machinery. https:
//doi.org/10.1145/1015330.1015345.

Weinberger, Kilian Q, Fei Sha, Qihui Zhu, and Lawrence K Saul. 2007. “Graph Laplacian Regularization
for Large-Scale Semidefinite Programming.” In Advances in Neural Information Processing Systems,
1489–96.

Williams, Christopher KI. 2002. “On a Connection Between Kernel PCA and Metric Multidimensional
Scaling.” Machine Learning 46 (1): 11–19.

Zhu, Xiaojin, Zoubin Ghahramani, and John D Lafferty. 2003. “Semi-Supervised Learning Using

22

https://doi.org/10.1109/2945.841121
https://doi.org/10.1109/2945.841121
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1109/T-C.1969.222678
https://proceedings.neurips.cc/paper/2007/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf
https://doi.org/10.1117/12.148698
https://doi.org/10.1145/1015330.1015345
https://doi.org/10.1145/1015330.1015345

Gaussian Fields and Harmonic Functions.” In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), 912–19.

Appendix A: Derivation of the t-SNE gradient

t-SNE minimizes the Kullback-Leibler divergence between the joint probabilities 𝑝𝑖𝑗 in the highdi-
mensional space and the joint probabilities 𝑞𝑖𝑗 in the low-dimensional space. The values of 𝑝𝑖𝑗 are
defined to be the symmetrized conditional probabilities, whereas the values of 𝑞𝑖𝑗 are obtained by
means of a Student-t distribution with one degree of freedom

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛

𝑞𝑖𝑗 =
(1 + ‖𝑦𝑖 − 𝑦𝑗‖2)

−1

∑𝑘≠ℓ (1 + ‖𝑦𝑘 − 𝑦ℓ‖2)
−1

where 𝑝𝑗|𝑖 and 𝑝𝑖|𝑗 are either obtained from Equation 1 or from the random walk procedure described
in Section 5. The values of 𝑝𝑖𝑖 and 𝑞𝑖𝑖 are set to zero. The Kullback-Leibler divergence between the
two joint probability distributions 𝑃 and 𝑄 is given by

𝐶 = 𝐾𝐿(𝑃‖𝑄) = ∑
𝑖
∑
𝑗
𝑝𝑖𝑗 log

𝑝𝑖𝑗
𝑞𝑖𝑗

= ∑
𝑖
∑
𝑗
𝑝𝑖𝑗 log 𝑝𝑖𝑗 − 𝑝𝑖𝑗 log 𝑞𝑖𝑗. (6)

In order to make the derivation less cluttered, we define two auxiliary variables 𝑑𝑖𝑗 and 𝑍 as follows

𝑑𝑖𝑗 = ‖𝑦𝑖 − 𝑦𝑗‖,

𝑍 = ∑
𝑘≠ℓ

(1 + 𝑑2𝑘ℓ)
−1 .

Note that if 𝑦𝑖 changes, the only pairwise distances that change are 𝑑𝑖𝑗 and 𝑑𝑗𝑖 for all 𝑗. Hence, the
gradient of the cost function 𝐶 with respect to 𝑦𝑖 is given by

𝜕𝐶
𝜕𝑦𝑖

= ∑
𝑗
(𝜕𝐶
𝜕𝑑𝑖𝑗

+ 𝜕𝐶
𝜕𝑑𝑗𝑖

) (𝑦𝑖 − 𝑦𝑗) = 2∑
𝑗

𝜕𝐶
𝜕𝑑𝑖𝑗

(𝑦𝑖 − 𝑦𝑗) (7)

The gradient 𝜕𝐶
𝜕𝑑𝑗𝑖

is computed from the definition of the Kullback-Leibler divergence in Equation 6
(note that he first part of this equation is a constant).

𝜕𝐶
𝜕𝑑𝑖𝑗

= −∑
𝑘≠ℓ

𝑝𝑘ℓ
𝜕 log 𝑞𝑘ℓ
𝜕𝑑𝑖𝑗

= −∑
𝑘≠ℓ

𝑝𝑘ℓ
𝜕 log 𝑞𝑘ℓ𝑄 − log𝑍

𝜕𝑑𝑖𝑗

= −∑
𝑘≠ℓ

𝑝𝑘ℓ (
1

𝑞𝑘ℓ𝑍
𝜕((1 − 𝑑2𝑘ℓ)

−1)
𝜕𝑑𝑖𝑗

− 1
𝑍
𝜕𝑍
𝜕𝑑𝑖𝑗

))

The gradient 𝜕((1−𝑑2𝑘ℓ)
−1)

𝜕𝑑𝑖𝑗
is only onzero when 𝑘 = 𝑖 and ℓ = 𝑗. Hence, the gradient 𝜕𝐶

𝜕𝑑𝑖𝑗
is given by

23

𝜕𝐶
𝜕𝑑𝑖𝑗

+ 2
𝑝𝑖𝑗
𝑞𝑖𝑗𝑍

(1 = 𝑑2𝑖𝑗)−2 − 2∑
𝑘≠ℓ

𝑝𝑘ℓ
(1 + 𝑑2𝑖𝑗)−2

𝑍
.

Noting that∑𝑘≠ℓ 𝑝𝑘ℓ = 1, we see that the gradients simplifies to

𝜕𝐶
𝜕𝑑𝑖𝑗

= 2𝑝𝑖𝑗(1 + 𝑑2𝑖𝑗)−1 − 2𝑞𝑖𝑗(1 + 𝑑2𝑖𝑗)−1

= 2(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(1 + 𝑑2𝑖𝑗)−1.

Substituting this term into Equation 7, we obtain the gradient

𝜕𝐶
𝜕𝑦𝑖

= 4∑
𝑗
(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(1 + ‖𝑦𝑖 − 𝑦𝑗‖2)−1(𝑦𝑖 − 𝑦𝑗).

Appendix B: Analytical Solution to RandomWalk Probabilities

Below, we describe the analytical solution to the random walk probabilities that are employed in the
random walk version of t-SNE (Section 5). The solution is described in more detail Grady (2006).

It can be shown that computing the probability that a random walk initiated from a non-landmark
point (on a graph that is specified by adjacency matrix W) first reaches a specific landmark point
is equal to computing the solution to the combinatorial Dirichlet problem in which the boundary
conditions are at the locations of the landmark points, the considered landmark point is fixed to unity,
and the other landmarks points are set to zero Kakutani (1945) ; Doyle and Snell (1984). In practice,
the solution can thus be obtained by minimizing the combinatorial formulation of the Dirichlet
integral

𝐷[𝑥] = 1
2
𝑥⊤𝐿𝑥,

where 𝐿 represents the graph Laplacian. Mathematically, the graph Laplacian is given by 𝐿 = 𝐷 − 𝑊,
where 𝐷 = diag(∑𝑗 𝑤1𝑗, ∑𝑗 𝑤2𝑗, … ,∑𝑗 𝑤𝑛𝑗). Without loss of generality, we may reorder the landmark
points such that the landmark points come first. As a result, the combinatorial Dirichlet integral
decomposes into

𝐷𝑥𝑁 = 1
2
[𝑥⊤𝐿 𝑥⊤𝑁] [𝐿𝐿 𝐵

𝐵⊤ 𝐿𝑁
] [𝑥𝐿

𝑥𝑁
]

= 1
2
(𝑥⊤𝐿 𝐿𝐿𝑥𝐿 + 2𝑥⊤𝑁𝐵

⊤𝑥𝐿 + 𝑥⊤𝑁𝐿𝑁𝑥𝑁),

where we use the subscript ⋅𝐿 to indicate the landmark points, and the subscript ⋅𝑁 to indicate the
non-landmark points. Differentiating 𝐷[𝑥𝑁]with respect to 𝑥𝑁 and finding its critical points amounts
to solving the linear systems

𝐿𝑁𝑥𝑁 = −𝐵⊤. (8)

Please note that in this linear system, 𝐵⊤ is a matrix containing the columns from the graph Laplacian
𝐿 that correspond to the landmark points (excluding the rows that correspond to landmark points).
After normalization of the solutions to the systems 𝑋𝑁, the column vectors of 𝑋𝑁 contain the

24

probability that a random walk initiated from a non-landmark point terminates in a landmark point.
One should note that the linear system in Equation 8 is only nonsingular if the graph is completely
connected, or if each connected component in the graph contains at least one landmark point Biggs
(1993).

Because we are interested in the probability of a random walk initiated from a landmark point
terminating at another landmark point, we duplicate all landmark points in the neighborhood graph,
and initiate the random walks from the duplicate landmarks. Because of memory constraints, it is
not possible to store the entire matrix 𝑋𝑁 into memory (note that we are only interested in a small
number of rows from this matrix, viz., in the rows corresponding to the duplicate landmark points).
Hence, we solve the linear systems defined by the columns of −𝐵⊤ one-by-one, and store only the
parts of the solutions that correspond to the duplicate landmark points. For computational reasons,
we first perform a Cholesky factorization of 𝐿𝑁, such that 𝐿𝑁 = 𝐶𝐶⊤, where 𝐶 is an upper-triangular
matrix. Subsequently, the solution to the linear system in Equation Equation 8 is obtained by solving
the linear systems 𝐶𝑦 = −𝐵⊤ and 𝐶𝑥𝑁 = 𝑦 using a fast backsubstitution method.

25

	Introduction
	Stochastic Neighbor Embedding
	t-Distributed Stochastic Neighbor Embedding
	Symmetric SNE
	The Crowding Problem
	Mismatched tails can compensate for mismatched dimensionalities
	Optimization methods for t-SNE

	Experiments
	Data Sets
	Experimental Setup
	Results

	Applying t-SNE to Large Data Sets
	Discussion
	Comparison with Related Techniques
	Weakness

	Conclusions
	Acknowledgments
	References
	Appendix A: Derivation of the t-SNE gradient
	Appendix B: Analytical Solution to Random Walk Probabilities

